Cramér-Rao Bound Study of Multiple Scattering Effects in Target Separation Estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramér-Rao Bound Study of Multiple Scattering Effects in Target Separation Estimation

The information about the distance of separation between two point targets that is contained in scattering data is explored in the context of the scalar Helmholtz operator via the Fisher information and associated Cramér-Rao bound (CRB) relevant to unbiased target separation estimation. The CRB results are obtained for the exact multiple scattering model and, for reference, also for the single ...

متن کامل

Cramér-Rao bound for range estimation

In this paper, we derive the Cramér-Rao bound (CRB) for range estimation, which does not only exploit the range information in the time delay, but also in the amplitude of the received signal. This new bound is lower than the conventional CRB that only makes use of the range information in the time delay. We investigate the new bound in an additive white Gaussian noise (AWGN) channel with atten...

متن کامل

Cramér-Rao Bound Study of Multiple Scattering Effects in Target Localization

The target position information contained in scattering data is explored in the context of the scalar Helmholtz operator for the basic twopoint scatterer system by means of the statistical estimation framework of the Fisher information and associated Cramér-Rao bound (CRB) relevant to unbiased position estimation. The CRB results are derived for the exact multiple scattering model and, for refe...

متن کامل

A constrained hybrid Cramér-Rao bound for parameter estimation

In statistical signal processing, hybrid parameter estimation refers to the case where the parameters vector to estimate contains both non-random and random parameters. Numerous works have shown the versatility of deterministic constrained Cramér-Rao bound for estimation performance analysis and design of a system of measurement. However in many systems both random and non-random parameters may...

متن کامل

Uniformly Improving the Cramér-Rao Bound and Maximum-Likelihood Estimation

An important aspect of estimation theory is characterizing the best achievable performance in a given estimation problem, as well as determining estimators that achieve the optimal performance. The traditional Cramér-Rao type bounds provide benchmarks on the variance of any estimator of a deterministic parameter vector under suitable regularity conditions, while requiring a-priori specification...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Antennas and Propagation

سال: 2013

ISSN: 1687-5869,1687-5877

DOI: 10.1155/2013/572923